Contact Us

GENTAUR Europe

 GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45 
Fax 0032 16 50 90 45
This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it. 

Gentaur Bulgaria

 GENTAUR BULGARIA
53 Iskar Str. 1191 Kokalyane, Sofia
Tel 0035924682280 
Fax 0035929830072
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR France

     GENTAUR France SARL
    9, rue Lagrange, 75005 Paris 
    Tel 01 43 25 01 50 
    Fax 01 43 25 01 60
    This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
    This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.

    Gentaur Germany

    This email address is being protected from spambots. You need JavaScript enabled to view it." style="font-size: 12px; line-height: 1.3em;">

      GmbH Marienbongard 20
    52062 Aachen Deutschland
    Tel (+49) 0241 56 00 99 68 
    Fax (+49) 0241 56 00 47 88 This email address is being protected from spambots. You need JavaScript enabled to view it." style="font-family: Arial, Tahoma, Verdana, Helvetica; line-height: 15.59375px; ">
    This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.

    This email address is being protected from spambots. You need JavaScript enabled to view it." style="font-size: 12px; line-height: 1.3em;">

    This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.

    This email address is being protected from spambots. You need JavaScript enabled to view it.

    Gentaur London

     GENTAUR Ltd. 
    Howard Frank Turnberry House 
    1404-1410 High Road 
    Whetstone London N20 9BH 
    Tel 020 3393 8531 
    Fax 020 8445 9411
    This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR Poland

     GENTAUR Poland Sp. z o.o. 

    ul. Grunwaldzka 88/A m.2

    81-771 Sopot, Poland
    Tel  058 710 33 44
    Fax 058 710 33 48 
    This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR Nederland

     GENTAUR Nederland BV
    Kuiper 1 
    5521 DG Eersel Nederland
    Tel 0208-080893 
    Fax 0497-517897
    This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.

    Gentaur Italy

     GENTAUR SRL IVA IT03841300167

    Piazza Giacomo Matteotti, 6, 24122 Bergamo
    Tel 02 36 00 65 93 
    Fax 02 36 00 65 94
    This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR Spain

     GENTAUR Spain
    Tel 0911876558
    This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.

    Genprice USA

    usa-flagGenprice Inc, Logistics
    547, Yurok Circle
    San Jose, CA 95123
    Phone/Fax: 

    (408) 780-0908 

    This email address is being protected from spambots. You need JavaScript enabled to view it.

    skype chat

    GENPRICE Inc. invoicing/ accounting:
    6017 Snell Ave, Suite 357
    San Jose, CA. 96123

     

    Gentaur Serbia

    serbiaSerbia, Macedonia FlagMacedonia, 

    montenegro-flagMontenegro, croatiaCroatia: 
    Tel 0035929830070 
    Fax 0035929830072
    This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR Romania

    romGENTAUR Romania

    Tel 0035929830070 
    Fax 0035929830072
    This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR Greece

    grGENTAUR Greece 

    Tel 00302111768494 
    Fax 0032 16 50 90 45

    This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

    Other countries

    Other countries
    Luxembourg +35220880274
    Schweiz Züri +41435006251
    Danmark +4569918806
    Österreich +43720880899
    Ceská republika Praha +420246019719
    Ireland Dublin +35316526556
    Norge Oslo +4721031366
    Finland Helsset +358942419041
    Sverige Stockholm +46852503438
    Magyarország Budapest +3619980547

    seal-in-search-symantec

     

     

    Wednesday, 28 August 2013 17:34

    Watching the production of new proteins in live cells

    Rate this item
    (1 Vote)

    mouseResearchers at Columbia University, in collaboration with biologists in Baylor College of Medicine, have made a significant step in understanding and imaging protein synthesis, pinpointing exactly where and when cells produce new proteins. Assistant Professor Wei Min's team developed a new technique to produce high-resolution imaging of newly synthesized proteins inside living cells. The findings were published in the July 9th issue of The Proceedings of the National Academy of Sciences (Volume 110; Issue 28).

    Proteins carry out almost every crucial biological function. Synthesis of new proteins is a key step in gene expression and is a major process by which cells respond rapidly to environmental cues in physiological and pathological conditions, such as cancer, autism and oxidative stress. A cell's proteome (i.e., the sum of all the cell's proteins) is highly dynamic and tightly regulated by both protein synthesis and disposal to maintain homeostasis and ensure normal functioning of the body. Many intricate biological processes, such as cell growth, differentiation and diseases, involve new protein synthesis at a specific location and time. In particular, long-lasting neuronal plasticity (changes in neural pathways and synapses that come from alterations in behavior, environment and bodily injury), such as those underlying learning and long-term memory, require new protein synthesis in a site- and time- dependent manner inside neurons.

    Min and colleagues' new technique harnesses deuterium (a heavier cousin of the normal hydrogen atom), which was first discovered by Harold Urey in 1932, also at Columbia University. When hydrogen is replaced by deuterium, the biochemical activities of amino acids change very little. When added to growth media for culturing cells, these deuterium-labeled amino acids are incorporated by the natural cell machineries as the necessary building blocks for new protein production. Hence, only newly synthesized proteins by living cells will carry the special deuterium atoms connected to carbon atoms. The carbon-deuterium bonds vibrate at a distinct frequency, different from almost all natural chemical bonds existing inside cells.

    The Columbia team utilized an emerging technique called stimulated Raman scattering (SRS) microscopy to target the unique vibrational motion of carbon-deuterium bonds carried by the newly synthesized proteins. They found that by quickly scanning a focused laser spot across the sample, point-by-point, SRS microscopy is capable of delivering location-dependent concentration maps of carbon-deuterium bonds inside living cells.

    "Incorporation of deuterium-labeled amino acids to new proteins is minimally disruptive, and their biochemical properties are almost identical to their natural counterparts," says Lu Wei, the lead author of the paper. "Our technique is highly sensitive, specific, and compatible with living systems under physiological conditions that don't require killing cells or staining."

    Prior to this discovery, the ability to observe protein synthesis in living cells had eluded scientists, who devoted extensive efforts to achieving this goal. A classic strategy that involves labeling amino acids with radioisotopes to trace and quantify proteome dynamics requires the samples be killed and exposed to films. Fluorescence microscopy, another popular method, takes advantage of the inherent glowing of green fluorescent protein (GFP) to follow a protein. While this process does work on individual proteins, scientists can't observe the cell's entire proteome. A third technique, bioorthogonal noncanonical amino acid tagging (BONCAT) metabolically incorporates unnatural (biosynthetic) amino acids containing reactive chemical groups. However, the method generally requires killing cells and subsequent dye staining, a process that presents an issue for live tissues and animals. Therefore, it is extremely challenging and desirable to quantitatively image proteome synthesis in living cells, tissues and animals with high resolution. Min's research opens the door for a new method to study living cells, presenting opportunities to understand previously unanswered questions about the behavior of cells as they perform their functions.

    The next step for Min's team is to capture where and when a new protein is produced inside brain tissues when an animal is subject to various lab exercises to form long-term memory. "Our new technique will greatly facilitate understanding the molecular mechanisms of many complex behaviors such as learning and diseases," he says.

    Read 4570 times